(1)获奖情况 [1]2017.12 入选云南省高层次人才引进计划青年人才 [2]2018.07 获昆明理工大学信息工程与自动化学院“关爱学生先进模范”称号 [3]2020.05 指导研究生获云南省研究生优秀科技创新成果奖1项 [4]2020.07 指导研究生(潘贝)获昆明理工大学优秀硕士学位论文1篇 [5]2020.09 获昆明理工大学校级教学成果奖特等奖1项(排名第6) [6]2020.12 获昆明理工大学红云园丁优秀教师奖 [7]2021.06 指导研究生(黄思)获昆明理工大学优秀硕士学位论文1篇 [8]2021.06 昆明理工大学优秀共产党员 [9]2021.11 指导本科生获全国大学生数学建模竞赛省级二等奖1项 [10]2021.11 指导研究生获全国研究生数学建模竞赛国家级三等奖2项 [11]2022.11.12昆明理工大学信息工程与自动化学院纳轩育才奖教基金学生工作二等奖 [12]2023.03获云南省高等教育教学成果奖一等奖(排名第6) [13]2022.12指导本科生获全国大学生数学建模竞赛省级三等奖1项 [14]2023.01指导研究生获中国研究生数学建模竞赛国家级三等奖3项(2022年获奖) [15]2023.06.292022-2023学年信息工程与自动化学院科研育人先进模范 [16]2023.12指导研究生获中国研究生数学建模竞赛国家级二等奖1项、三等奖2项(2023年获奖) [17]20240307 获2023年度CAAI教学成果激励计划一类成果(排名第8) [18]2024.06.24 指导研究生(黄姝祺、王月晨)获昆明理工大学优秀硕士学位论文2篇 (2)教学/科研项目 [1]金怀平,北京理工大学委托科技开发项目,工业数据挖掘与异常状态监测技术研究,2024.09.23-2025.12.31,19万元,在研,主持 [2]金怀平,云南省“兴滇英才支持计划”青年人才项目(KKRD202203073),基于数据驱动和智能优化的复杂工业过程关键性指标软测量方法研究,2022.12-2027.12,82万元,在研,主持 [3]金怀平,国家自然科学基金地区项目(62163019),基于伪标记优化的流程工业过程半监督软测量方法研究,2022.01-2025.12,33万元,在研,主持 [4]金怀平,国家自然科学基金地区项目(61763020),基于进化多目标优化的集成即时学习软测量建模方法研究,2018.01-2021.12,39万元,结题,主持 [5]金怀平,云南省应用基础研究计划项目面上项目(202101AT070096),基于进化优化的伪标记估计及半监督软测量建模方法研究,2021.06-2024.5,10万元,在研,主持 [6]金怀平,云南省应用基础研究计划项目青年项目(2018FD040),基于多模态扰动及进化多目标优化的集成学习软测量建模方法研究,2018.06-2021.5,5万元,结题,主持 [7]金怀平,云南省计算机应用技术重点实验室开放课题,基于半监督集成学习的流程工业软测量建模方法研究,2021.03-2023.02,1万元,在研,主持 [8]金怀平,云南省教育厅科学研究基金项目(2017ZZX149),基于进化优化算法和加权相似度的即时学习软测量建模方法研究,2017.01-2019.01,4万元,结题,主持 [9]金怀平,昆明理工大学高层次人才平台建设项目,2017.12-2020.12,70万元,在研,主持 [10]钱斌,云南省科技厅重点项目(202201AS070030),复杂生产和运输协同调度问题的增强分布估计求解算法研究,2022.06~2025.05,50万元,在研,参与(第4) [11]杨彪,国家自然科学基金地区项目(61863020),微波与多金属矿物相互作用过程的建模与最优控制研究,2019.01-2022.12,39万元,在研,参与(第3) [12]胡蓉,国家自然科学基金地区项目(61963022),多维概率模型进化算法求解低碳车辆配送问题研究,2020.01-2023.12,38万元,在研,参与(第3) [13]沈韬,国家自然科学基金面上项目(61971208),低维液态结构太赫兹波激发与原位增强研究,2020.01-2023.12,62万元,在研,参与(第3) [14]陈祥光,企业横向课题,金霉素发酵罐建模与优化控制系统研究及应用,2011.09-2013.06,100万元,已结题,参加(主要成员) [15]陈祥光,企业横向课题,菌渣生物发酵降解抗生素残留中试实验自动测控系统,2013.06-2013.10,30万元,已结题,参加(主要成员) [16]陈祥光,企业横向课题,水质在线综合监测系统开发与集成应用,2014.03-2014.08,50万元,已结题,参加(主要成员) (3)论文 英文论文: [1]Yu Gao;Huaiping Jin*; Zhiqiang Wang; Bin Wang; Bin Qian; Biao Yang. A quality-relevant deep rule-based system with complementary lifelong learning for adaptive quality prediction in industrial semi-supervised process data streams,Information Sciences, 122036, https://doi.org/10.1016/j.ins.2025.122036. (SCI检索,中科院2区), Accepted on 2025-02-26. [2]Huaiping Jin*, Xin Dong, Bin Qian, Bin Wang, Biao Yang, Xiangguang Chen. Soft sensor modeling using deep learning with maximum relevance and minimum redundancy for quality prediction of industrial processes,ISA Transactions, https://doi.org/10.1016/j.isatra.2025.02.010. (SCI检索,中科院2区,Top期刊) , Accepted, Available online 13 February 2025. [3]Xinghang Wang(First author), Haibo Tao (Co-first author),Bin Wang,Huaiping Jin*,ZhenhuiLi*.CFI-ViT: A coarse-to-fine inference based vision transformer for gastric cancer subtype detection using pathological images[J].Biomedical Signal Processing and Control, Accepted on 3November 2024. (中科院2区, IF: 4.9) [4]Huaiping Jin*, KehaoZhang,Shouyuan Fan, Huaikang Jin, Bin Wang. Wind power forecasting based on ensemble deep learning with surrogate-assisted evolutionary neural architecture search and many-objective federated learning [J].Energy, 2024, 308: 133023.(SCI检索,中科院1区,Top期刊)(1 November 2024) [5]Huaiping Jin*,Qin Xiong,BinWang, Bin Qian, Biao Yang, Shoulong Dong. Soft Sensor Development Based on Unsupervised Dynamic Weighted Domain Adaptation for Quality Prediction of Batch Processes[J].IEEE Transactions on Instrumentation and Measurement,2024, 73,Art no. 2525219: 1-19.(SCI检索,中科院2区,Top期刊)(July152024) [6]Huaiping Jin*, Guangkun Liu, Bin Qian, Bin Wang, Biao Yang, Xiangguang Chen.Semi-supervised soft sensor development based on dynamic dimensionality reduction-assisted large-scale pseudo label optimization and sample-weighted quality-relevant deep learning[J].Chemical Engineering Science, 2024: 120387.(SCI检索,中科院2区,Top期刊)(October52024) [7]Huaiping Jin*, Feihong Rao, Wangyang Yu, Bin Qian, Biao Yang, Xiangguang Chen. Pseudo label estimation based on label distribution optimization for industrial semi-supervised soft sensor[J].Measurement, 2023, 217: 113036.(SCI检索,中科院2区)(August2023) [8]Huaiping Jin*,Yunlong Li, Bin Wang, Biao Yang, Huaikang Jin, Yundong Cao. Adaptive forecasting of wind power based on selective ensemble of offline global and online local learning[J].Energy Conversion and Management, 2022, 271: 116296.(SCI检索,中科院1区,Top期刊)(1 November 2022) [9]Huaiping Jin*, Shuqi Huang, Bin Wang, Xiangguang Chen, Biao Yang, Bin Qian.Soft sensor modeling for small data scenarios based on data enhancement and selective ensemble[J].Chemical Engineering Science, 2023: 118958.(SCI检索,中科院2区,Top期刊)(5 September 2023) [10]YuechengWang,Huaiping Jin*,XiangguangChen, Biao Yang, Bin Qian. Online-Dynamic-Clustering-Based Soft Sensor for Industrial Semi-Supervised Data Streams[J].Sensors, 2023, 23,1520: 1-29.(SCI检索)(30 January 2023) [11]YanZhang,Huaiping Jin*,HaipengLiu, Biao Yang, Shoulong Dong. Deep Semi-Supervised Just-in-Time Learning Based Soft Sensor for Mooney Viscosity Estimation in Industrial Rubber Mixing Process[J].Polymers, 2022, 14(5): 1018.(SCI)(3 March 2022) [12]Zheng Li,Huaiping Jin*, Shoulong Dong, Bin Qian, Biao Yang, Xiangguang Chen,Semi-supervised ensemble support vector regression based soft sensor for key quality variable estimation of nonlinear industrial processes with limited labeled data[J]. Chemical Engineering Research and Design, 2022, 179: 510-526.(SCI)(March 2022) [13]Youwei, Li,Huaiping Jin*, Shoulong Dong, Biao Yang, Xiangguang Chen. Pseudo-Labeling Optimization Based Ensemble Semi-Supervised Soft Sensor in the Process Industry[J].Sensors, 2021, 21(24): 8471.(SCI)(19 December 2021) [14]Huaiping Jin*, Lixian Shi, Xiangguang Chen, Bin Qian, Biao Yang, Huaikang Jin. Probabilistic wind power forecasting using selective ensemble of finite mixture Gaussian process regression models[J]. Renewable Energy,2021,174: 1-18.(SCI检索,中科院1区,Top期刊)(August 2021) [15]Huaiping Jin*, Zheng Li, Xiangguang Chen, Bin Qian, Biao Yang, Jianwen Yang. Evolutionary optimization based pseudo labeling for semi-supervised soft sensor development of industrial processes[J].Chemical Engineering Science, 2021,237: 116560.(SCI检索,中科院二区,Top期刊)(29 June 2021) [16]Huaiping Jin*, Jiangang Li, Meng Wang, Bin Qian, Biao Yang, Zheng Li, Lixian Shi. Ensemble just-in-time learning-based soft sensor for mooney viscosity prediction in an industrial rubber mixing process[J].Advances in Polymer Technology, 2020, 2020: 1-14..(27 Mar 2020) [17]Bei Pan,Huaiping Jin*, Biao Yang, Bin Qian, Zhengang Zhao. Soft sensor development for nonlinear industrial processes based on ensemble just-in-time extreme learning machine through triple-modal perturbation and evolutionary multiobjective optimization[J].Industrial & Engineering Chemistry Research, 2019, 58(38): 17991-18006.(SCI检索,中科院二区,Top期刊) [18]Huaiping Jin*, Bei Pan, Xiangguang Chen, Bin Qian. Ensemble just-in-time learning framework through evolutionary multi-objective optimization for soft sensor development of nonlinear industrial processes[J].Chemometrics and Intelligent Laboratory Systems, 2019, 184: 153-166. (SCI) [19]Bei Pan,Huaiping Jin*, Li Wang, Bin Qian, Xiangguang Chen, Si Huang, Jiangang Li. Just-in-time learning based soft sensor with variable selection and weighting optimized by evolutionary optimization for quality prediction of nonlinear processes[J].Chemical Engineering Research and Design, 2019, 144: 285-299. (SCI) [20]Huaiping Jin*, Xiangguang Chen, Li Wang, Kai Yang, Lei Wu. Dual learning-based online ensemble regression approach for adaptive soft sensor modeling of nonlinear time-varying processes[J].Chemometrics & Intelligent Laboratory Systems,2016, 151: 228-244. (SCI) [21]Huaiping Jin*, Xiangguang Chen, Li Wang, Kai Yang, Lei Wu. Adaptive soft sensor development based on online ensemble Gaussian process regression for nonlinear time-varying batch processes.Industrial & Engineering Chemistry Research, 2015, 54(30): 7320–7345.(SCI检索,中科院二区,Top期刊) [22]Huaiping Jin*, Xiangguang Chen, Jianwen Yang, Hua Zhang, Li Wang, Lei Wu. Multi-model adaptive soft sensor modeling method using local learning and online support vector regression for nonlinear time-variant batch processes.Chemical Engineering Science, 2015, 131: 282-303.(SCI检索,中科院二区,Top期刊) [23]Huaiping Jin*, Xiangguang Chen, Jianwen Yang, Li Wang, Lei Wu. Online local learning based adaptive soft sensor and its application to an industrial fed-batch chlortetracycline fermentation process.Chemometrics and Intelligent Laboratory Systems, 2015, 143: 58-78. (SCI) [24]Huaiping Jin*, Xiangguang Chen, Jianwen Yang, Lei Wu. Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes.Computers & Chemical Engineering, 2014, 71: 77-93. (SCI,中科院二区,) [25]Huaiping Jin*,Xiangguang Chen, Jianwen Yang, Lei Wu, Li Wang. Hybrid intelligent control of substrate feeding for industrial fed-batch chlortetracycline fermentation process.ISA Transactions,2014, 53(6): 1822-1837. (SCI,中科院二区) [26]LiWang,Huaiping Jin*, Xiangguang Chen, Jiayu Dai, Kai Yang, Dongxiang Zhang.Soft sensor development based on the hierarchical ensemble of Gaussian process regression models for nonlinear and non-Gaussian chemical processes[J].Industrial & Engineering Chemistry Research, 2016, 55(28): 7704-7719.(SCI,中科院二区,Top期刊) [27]Kai Yang,Huaiping Jin*, Xiangguang Chen, Jiayu Dai, Li Wang, Dongxiang Zhang. Soft sensor development for online quality prediction of industrial batch rubber mixing process using ensemble just-in-time Gaussian process regression models[J].Chemometrics and Intelligent Laboratory Systems, 2016, 155: 170-182. (SCI,中科院二区) 中文论文: [1]金怀平*,刘志泳, 王彬, 钱斌, 刘海鹏. 融合时频特征的多源无监督域自适应轴承故障诊断方法[J].振动与冲击,2024,43(13):12-24.DOI:10.13465/j.cnki.jvs.2024.13.002. (2024.07.15) [2]金怀平*,王建军,董守龙,钱斌,杨彪,陈祥光.基于深度学习特征提取与多目标优化集成修剪的选择性集成学习软测量方法[J].控制与决策, 2023, 38(03): 738-750. (EI)(2023.03) [3]黄成,金怀平*,王彬,董守龙,钱斌,杨彪.基于时空局部学习的集成自适应软测量方法[J].仪器仪表学报, 2023, 44(01): 231-241.(EI)(2023.01) [4]金怀平*,黄成,董守龙,黄思,杨彪,钱斌,陈祥光. 基于多相似度局部状态辨识的集成学习自适应软测量方法[J].计算机集成制造系统, 2023, 29(02): 460-473. (EI)(2023.02) [5]金怀平*,薛飞跃,李振辉,陶海波,王彬.基于病理图像集成深度学习的胃癌预后预测方法[J].电子与信息学报, 2023, 45(7): 2623-2633.(EI)(2023.07) [6]石立贤,金怀平*,杨彪,钱斌,金怀康.基于局部学习和多目标优化的选择性异质集成超短期风电功率预测方法[J].电网技术,2022,46(02):568-577.(EI)(2022.07) [7]金怀平*,张燕, 董守龙, 杨彪, 钱斌, 陈祥光. 基于半监督集成即时学习的橡胶混炼过程门尼黏度软测量研究[J].高校化学工程学报, 2022, 36(04):586-596.(EI)(2022.08) [8]金怀平*,黄思,王莉,陈祥光,潘贝,李建刚.基于进化多目标优化的选择性集成学习软测量建模[J].高校化学工程学报, 2019, 33(03): 680-691. (EI) [9]李运龙,金怀平*, 范守元, 金怀康, 王彬.在线选择性集成即时学习风电功率自适应预测.太阳能学报.2023.10.26, 录用.(EI) [10]金怀平*,陶玉泉,李振辉,陶海波,王彬,薛飞跃.基于多模态多实例学习的胃癌患者生存预测算法.计算机辅助设计与图形学学报. 2024.02.04, 录用.(EI) [11]金怀平, 赵鹏飞, 饶飞鸿*, 杨彪, 钱斌.基于大规模伪标记优化的间歇过程半监督质量预测.计算机集成制造系统, 2024.10, 录用.(EI) [12]周泓宇, 陶海波, 薛飞跃, 王彬, 金怀平*, 李振辉.基于多分辨率特征融合与上下文信息的胃癌复发预测方法.生物医学工程学杂志,2024, 41 (05): 886-894.(EI) (4)知识产权 [1]陈祥光, 姚民仆, 王震, 张惠康, 杨建文,金怀平, 黄苏一, 余庆. 一种金霉素发酵过程补糖速率优化控制的方法和系统[P]. 授权,ZL201410037883.3, 2016-08-17. [2]金怀平, 张燕. 一种半监督集成即时学习工业混炼胶门尼粘度软测量方法[P]. 授权, ZL202110458052.3, 2022-03-15. [3]金怀平, 李友维. 基于半监督集成学习的金霉素发酵过程软测量建模方法[P]. 授权, ZL202110447724.0, 2022-05-20. [4]金怀平,王建军. 基于自编码器多样性生成机制的集成学习软测量建模方法[P]. 授权, ZL202110436544.2, 2022-05-06. [5]金怀平, 潘贝. 一种基于多目标优化的集成即时学习工业过程软测量建模方法[P]. 授权,ZL201910039438.3, 2022-06-14. [6]金怀平, 李建刚. 一种基于异构相似度的选择性集成即时学习软测量建模方法[P]. 授权,ZL201910150216.9, 2022-06-14. [7]金怀平, 石立贤, 金怀康.一种基于递阶集成的风电功率概率预测方法[P]. 授权,ZL202010348291.9, 2022-07-01. [8]金怀平, 黄成. 一种基于在线选择性集成的自适应软测量建模方法[P]. 授权,ZL202110459338.3, 2022-07-19. [9]金怀平, 李拯, 胡保林. 一种基于进化优化的半监督学习工业过程软测量建模方法[P]. 授权,ZL202011014614.7, 2022-09-13. [10]金怀平, 李建刚. 一种基于集成即时学习的工业混炼胶门尼粘度软测量方法[P]. 授权, ZL201910594011.X, 2022-09-13. [11]金怀平, 黄思. 一种基于进化多目标优化的选择性分层集成高斯过程回归软测量建模方法[P]. 授权, ZL201910150223.9, 2022-09-13. [12]金怀平, 熊琴, 陶海波, 王彬, 杨彪, 钱斌. 一种基于动态多层域自适应的发酵过程软测量建模方法[P]. 授权, ZL202310338540.X, 2024-05-31. [13]金怀平, 张克豪, 金怀康, 王彬, 杨彪, 钱斌. 基于代理辅助进化神经网络结构搜索的风电功率预测方法[P]. 授权, ZL202310397284.1, 2024-06-18. [14]金怀平, 刘志泳, 陶海波等. 一种基于特征融合和无监督域自适应的轴承故障诊断方法[P].授权,ZL202310500834.8,2024-07-02. [15]金怀平, 王月晨. 基于数据流在线聚类分析的工业过程软测量建模方法、系统[P].授权,ZL202111662376.5, 2024-07-02. [16]金怀平, 薛飞跃. 基于集成深度学习的全视野数字切片图像分类建模方法及装置[P].授权,ZL202210149217.3, 2024-08-23. [17]金怀平, 杨婷, 金怀康等. 基于持续学习的自适应风电功率预测方法、系统[P].授权,ZL202310798067.3, 2024-08-20. [18]金怀平, 刘光坤, 陶海波等. 基于混合搜索进化优化的工业过程软测量建模方法、系统[P].授权,ZL202310912507.3, 2024-08-20. [19]金怀平, 李运龙. 融合深度学习和自适应建模机制的风电功率预测方法、系统[P].授权,ZL202210079085.1,2024-09-17. [20]金怀平, 饶飞鸿. 基于热扩散标签传播的半监督集成工业过程软测量建模方法、系统[P],ZL202210089144.3, 2024-10-29. [21]金怀平, 高誉, 陶海波, 王彬, 杨彪, 钱斌. 基于深度演化模糊规则系统的工业过程软测量方法[P].ZL202310536760.3,2024-11-19. [22]金怀平, 陶玉泉, 李振辉等. 基于对比学习多模态的弱监督胃癌组织病理图像分类方法、系统[P]. ZL202310644210.3, 2025-01-21. [23]金怀平; 黄姝祺; 杨彪; 刘海鹏; 张志坤. 基于变分自编码器和生成对抗网络的虚拟样本生成方法及软测量建模方法[P]. ZL202210091114.6, 2025-01-28. [24]金怀平, 杨观智, 陶海波等. 一种基于多阶段注意力机制的深度学习风电功率预测方法. [P]. 授权. [25]金怀平, 周泓宇, 陶海波等. 融合多尺度特征上下文的全视野数字切片图像分类方法[P]. 授权. (5)专著、教材 [1]陈祥光,刘春涛,冼南宝,金怀平.计算机仿真技术及CAD.北京:兵器工业出版社, 2011.3. ISBN: 978-7-80248-688-1. (共计59.8万字,十一五国家级规划教材, 2013年北京高等教育精品教材) (本人撰写第7章,约10万字) |