(1)获奖情况 [1]2017年中国电子学会科技进步奖三等奖一项(排名第五); (2)教学/科研项目 [1]主持国家自然科学基金地区项目(62162033)“面向复杂多视图数据表示的深度矩阵/张量分解方法研究”; [2]主持国家自然科学基金青年项目(61603159)“面向低质量图像数据的稀疏低秩矩阵回归与分解方法研究”; [3]主持云南省基础研究计划面上项目(202101AT070438)“面向大规模复杂跨模态数据的语义表示与检索方法研究”; [4]主持云南省科技厅-昆明理工大学“双一流”创建联合专项面上项目(202101BE070001-056)“基于稳健深度矩阵分解的肿瘤基因选择方法研究”; [5]主持江苏省自然科学基金青年项目(BK20160293)“基于稀疏低秩的鲁棒矩阵回归与分解方法研究”; [6]主持中国博士后科学基金项目(2017M611695)“基于稀疏低秩理论的图像回归与分解理论研究”; [7]主持江苏省博士后科学基金项目(1701094B)“面向高维图像鲁棒表示的稀疏低秩理论与方法研究”; [8]主持江苏省双创博士计划项目(科技副总类); (3)论文 [1]Zhenqiu Shu, et al. Dual local learning regularized NMF with sparse and orthogonal constraints.Applied Intelligence(SCI源刊), 2022. [2]Zhenqiu Shu, et al. Rank-constrained nonnegative matrix factorization algorithm for data representation. Information Sciences (SCI源刊), 2020, 528: 133-146. [3]Zhenqiu Shu, et al. Dual local learning regularized non-negative matrix factorization and its semi-supervised extension for clustering. Neural Computing and Applications (SCI源刊), 2021, 33(11): 6213-6231. [4] Zhenqiu Shu, et al. Deepsemi-nonnegative matrix factorization with elastic preserving for data representation. Multimedia Tools and Applications (SCI源刊), 2021,80(2), 1707-1724. [5]Zhenqiu Shu, et al.Correntropy-based dual graph regularized non-negative matrix factorization with Lp smoothness for data representation. Applied Intelligence, 2022,52(7): 7653-7669. [6] Zhenqiu Shu, et al. Parameter-less auto-weighted multiple graph regularized nonnegative matrix factorization for data representation. Knowledge-based Systems (SCI源刊), 2017,131:105-112. [7] Zhenqiu Shu, et al. Local regularization concept factorization and its semi-supervised extension for image representation. Neurocomputing (SCI源刊), 2015, 152(22):1-12. [8]Zhenqiu Shu, et al. Multiple Laplacian graph regularized low rank representation with application to image representation. IET Image Processing (SCI源刊), 2017, 11(6): 370 - 378. [9] Zhenqiu Shu, et al. Structure preserving sparse coding for data representation. Neural Processing Letters (SCI源刊), 2018, 48 :1-15. [10]Zhenqiu Shu, et al. Local and global regularized sparse coding for data representation. Neurocomputing (SCI源刊), 2016, 198(29): 188-197. (4)知识产权 [1]舒振球等.无参数自动加权多图正则化非负矩阵分解及图像识别方法.发明专利,授权号:CN 107609596, 2020.(已授权) [2]舒振球等.封顶概念分解方法及图像聚类方法.发明专利,申请号:201711257431.6,2017.(已授权) [3]舒振球等.面向多视图聚类的多图正则化深度矩阵分解方法.发明专利,申请号:20180607971.0, 2018.(已授权) [4]舒振球等.基于局部学习正则化的深度矩阵分解的聚类方法,发明专利,申请号:201810905948.X,2018.(已授权) [5]舒振球等.基于深度矩阵的约束概念分解聚类方法.发明专利,申请号:201811281896.X,2018.(实质性审查) [6]舒振球等.对偶局部学习的非负矩阵分解聚类方法.发明专利,申请号:201811221673.42018.(实质性审查) [7]舒振球等.一种基于图正则化的鲁棒性结构非负矩阵分解聚类方法.发明专利,申请号:201811597620.2, 2018.(实质性审查) [8]舒振球等.一种稀疏对偶约束的高光谱图像解混方法.发明专利,申请号:201910514472.1, 2018.(实质性审查) [9]舒振球等.一种基于对偶局部一致的约束稀疏概念分解的聚类方法.发明专利,申请号:202010507876.0, 2020.(发明公开) [10]舒振球等.基于图正则化的平滑范数受限非负矩阵分解的聚类方法.发明专利,申请号:2020100098641.2, 2020.(实质性审查) |